If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7r^2-40r-63=0
a = 7; b = -40; c = -63;
Δ = b2-4ac
Δ = -402-4·7·(-63)
Δ = 3364
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3364}=58$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-58}{2*7}=\frac{-18}{14} =-1+2/7 $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+58}{2*7}=\frac{98}{14} =7 $
| 2x^2=-10x-11 | | 9x+10x=525 | | 5(-1)+3=x | | 5(-5)+1=x | | 1/3x=122 | | 6−3+4x+1=455355 | | 6−3+4x+1=6x+1 | | H(3x)=2x^2+7 | | 1-2z=3z-23 | | 10x+9x=525 | | 6−3+4x+1=8x+1 | | (8x-9)-12x+5=-4x-4 | | 3(2.2)=1+1/3b | | 2|x-4|+8=44 | | 17+3x=5x-3 | | 2+x/3=3x/4-5 | | -15+4y=-20 | | 10+4y=-20 | | 4x–5=27 | | -25+4y=-20 | | -5+4y=-20 | | 63=51+6y | | -x+130=3x+140 | | 3^x=73 | | 8/x+1/8x=0 | | x^+11x+7=0 | | 180=100+3x+x | | 90=x+10+2x+x | | 1/x+1/x+11=23/11x+33 | | x×x+5x+4=0 | | 7x+12=5+4x | | 4x+13/7-1=3x-5/10 |